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THE FORCE ON THE FLEX:
GLOBAL PARALLELISM AND PORTABILITY.

HARRY F. JORDAN'

ABSTRACT

X parallel programming methodology, called the force, supports the con-
strictioi of programs to be executed in parallel by an unspecified, but poten-
tially large, number of processes. The methodology was originally developed
on a pipelined. shared memory multiprocessor, the Denelcor HEP, and embo-
dit-s the primitive operations of the force in a set of macros which expand into
mulliprocessor Fortran code. A small set of primitives is sufficient to write
large parallel programs, and the system has been used to produce 10,000 line
programs in coml)utational fluid dynamics. The level of complexity of the
force prilitives is intermediate. It is high enough to mask detailed architec-
tural differences between multiprocessors but low enough to give the user
control over performance.

The system is being ported to a medium scale multiprocessor, the
Flex/32, which is a 20 processor system with a mixture of shared and local
memory. Memory organization and the type of processor synchronization
supported by the hardware on the two machines !ead to some differences in
efficient. implementations of the force primitives, but the user interface
remains the same. An initial implementation was done by retargeting the
macros to Flexible Computer Corporation's ConCurrent C language. Subse-
(luntly, the macros were caused to directly produce the system calls which
form the basis for ConCurrent C. The implementation of the Fortran based
system is in step with Flexible Compttter Corporations's implementation of a
Fortran system in the parallel environment-

,Univer..ity or Colorado, Boulder, CO 80300-0.125.

Research was supported in part by NASA Contract No. NAS1-17070 and by
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The Global Parallelism Concept
The unifying idea behind the programming environment discussed in this

paperis that of "global" parallelism. In contrast to the dataflow point of view
we retain the idea of multiple instruction streams but insulate the user from
the detailed management of the streams on an individual basis. One view of
this unifying idea. is as a way of incorporating parallelism into the structural
hierarchy of a program. It is in contrast to the encapsulation of parallelism
into one or more program modules and can be viewed as parallelism with the
largest possible "grain" size.

The view of a computation as an hierarchically structured set of func-
tions is well established and maps into the subroutine calling hierarchy in
most programming languages. The level of the (usually tree structured) func-
tional hierarchy at which parallelism enters into the description of an algo-
ritfhn is an important issue. The leaf level, where SIMD parallelism is
appropriate can be denoted as fine grained parallelism. As MIMD parallelism
is applied at higher levels, we can speak of algorithms with coarser grained
parallelism. With fine grained parallelism, the major issue in expressing the
computation is to specify exactly what is to be done in parallel in each of the
small grains. Very tight synchronization must be the rule (as in SIMD) for
fine grained parallelism to make sense. In a program with coarse grained
parallelism the amount of code devoted to expressing the parallelism may be
very small and localized in a high level module. In exchange, the specification
of synchronization becomes the major issue and may appear explicitly at any
level of structure, all the way down to the leaf.

One possible way to fit MINID parallelism into the calling hierarchy is to
try to encapsulate parallelism below a certain level, or grain size. This has
the advantage that the upper levels of the program can be written without
knowing anything about parallel computation. Using the Fork/Join mechan-
ism [1] to manage parallel processes, a single instruction stream would fork
within some subroutine into multiple streams which would perform a parallel
computation and then join into a single stream before returning from the
subroutine. The drawbacks in this scheme lie in the area of performance. It
is well known that even a small amount of sequential co. ,.. an otherwise
parallel program can decrease efficiency significantly on a sy'- "n with a large
degree of parallelism. The encapsulation idea forces all code ,l~ove a certain
level of structure to be sequential. Furthermore, there is overhead associated
with managing processes and execution environments in fork and join which
is invoked whenever the program passes into or out of the parallel level of
structure.

Since encapsulation overheads tend to make larger grained parallelitm
more efficient regardless of the grain size, there is a good reason to locate
parallelism at the highest level of program structure in the MIMD environ-
ment. Experience shows that it is quite feasible to write applications pro-
grams with "global" parallelism. In this environment one begins a program
under the assumption that it may be executed by an arbitrary number P of
processes. There is no explicit code for process management. The processes
are managed by entry level, system dependent code which chlooses the
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number of processes on the basis of hardware structure and available
knowledge of algorithm needs. The explicitly appearing code to deal with
parallelism is all related to process synchronization and data sharing. The
idea of global parallelism applies to the decomposition of algorithms on the
basis of data rather than function. With a high degree of parallelism some
data decomposition of an algorithm is surely necessary since the number of
independent functions is limited. Thus this idea is probably most appropri-
ate to systems supporting many processes.

The above concept of global parallelism has been incorporated into a pro-
gra ming methodology called the "force". The force [2] methodology for
parallel programming arose in trying to produce high performance parallel
programs in a shared-memory multiprocessor running up to 200 processes on
the same user program [3]. Multiprogramming was not an issue, and all
emphasis was on single problem solution speed. Partly for performance meas-
urement purposes and partly for program manageability, a programming
style emerged in which a single piece of code was written which could be exe-
cuted by a force of processes in parallel. The number of processes constitut-
ing the force is constant during execution but is bound as late as the begin-
ning of execution, and may be one. Similar techniques have been developed
for programming some more recent multiprocessors, notably the Bolt Beranek
and Newman Butterfly [4] and the IBM research processor RP3[5].

Several advantages arise out of independence from the number of
processes. It is not necessary to design algorithms with a detailed depen-
dence on the, potentially very large, number of processes executing them.
The choice of the optimal number of processes can be made at run time on
the basis of system hardware configuration and load. Since complete
independence from the number of processes implies correct execution with
only one process, the issues of arithmetic correctness and multi-process syn-
chronizat ion can be separated in the testing of a program.

Statements written in a force program are implicitly executed by all
processes in parallel. Variables appearing in statements are divided into local
variables, having separate instances for each process, and global variables,
shared among all processes of the force. An assignment statement, for exam-
ple, may combine the values of global and local variables to produce a local or
global result. If the result is local, no assignment conflict is possible. If it is
global, then assignment conflict must be prevented, either by allocation of
disjoint sections of a global data structure to multiple processes or by syn-
chronizing the assignment across processes, say by enclosing it in a critical
section or by using producer/con ,imer synchronization on the variable 'n For

assigned. Library or user subroutin,. which are either free of side effects or A&I

carefully synchronized can be in.yoked in parallel, one copy for each process.
"ed [
.tlon

Realization of the Concept

The programming language associated with the force consists of some
simple extensions to the Fortran language, which are currently implemented to ..
as macros expanded by a language independent preprocessor. The target ility Codes

, -11 and/or
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11 -11
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Fortran system must, of course, include ways of creating multiple processes
and of supporting synchronized access to global variables. The macros
interact through the variables of a parallel environment, which contains some
general information such as the number of processes and some machine
dependent items.

The macros currently constituting the force can be divided into several
classes, as shown in Fig. 1. The first class deals with parallel program struc-
ture. The macros Force and Forcesub respectively begin parallel main pro-
grams and parallel subroutines. They make the parallel environment vari-
ables available to the macros within that program module as well as making
the number of processes and a unique identifier for the current process avail-
able to the user at run time. An End Declarations macro marks the beginning
of executable code and provides target locations for declarations and start up
code which may be generated by the macros. A Join macro terminates the
parallel main program. It is the last statement executed by all processes of
the force.

Macros of the second class deal with variable declaration. This class
currently includes only Global and Local macros. Global variables are associ-
ated with Fortran common while local variables are ordinary Fortran vari-
aables local to a separately compiled program module. Sharing of local vari-
ables among several program modules, but local to one process, can only be
accomplished by parameter passing. The static allocation flavor of Fortran
makes it difficult to build a structure of common variables with one instance
for each process when the number of processes is not known until execution
time.

Macros of another class distribute work across processes. The most fami-
liar construct is the DOALL, which is employed when instances of a loop
body for different index values are independent and can thus be executed in
any order. Two versions are provided. The Presched DO divides index values
among processes in a fixed manner which depends only on the index range
and the number of processes. The Selfsched DO allows processes to schedule
themselves over index values by obtaining the next available value of a
shared index as they become free to do work. For situations in which it is
desirable to parallelize over both indices of a doubly nested loop, both
prescheduled, Pre2DO, and self scheduled, Self2DO, macros are available.
Independence of the loop body instances over both indices is, of course,
re(uiired for correct operation. A similar construct is the parallel case, Pcase,
which distributes different single stream code blocks over the processes of the
force. Execution conditions can be associated with each block, and any
number of these conditions may be true simultaneously. No order of evalua-
tion of the conditions is specified, and each will be evaluated by one arbi-
trarily selected process. Thus conditions depending only on global variables
are most meaningful.

At the heart of the force methodology are the synchronization macros.
They characterize the approach to parallel programming and provide the
means for controlling the force so that coherent and deterministic computa-
tion can be performed. Two subclasses of synchronization are control flow
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Macros associated with program structure:
Force <name> of <# procs> ident <proc #>

<(declarations>
End declarations

<force program>
-Join

Forcesub <name> of <#procs> ident <proc #>
<declarations>

End header
<subroutine body >

RETURN

Forcecall <name>(<parameters>)

Declaration macros:
Global <variable names>
Local <Fortran declaration>

Macros specifying parallel execution:
Pease on <variable>

<code block>
Usect

<code block>

End pease

[Pre~elf]sched DO <n> <var> = <il>, <i2>, <i3>
<loop body>

<n> End [prefself]sched DO

Synchronizing macros:
Barrier

<code block>
End barrier

Critical S<variable>
<code block>

End critical

Produce <variable> = <expression> (producer)
... = ... Use(<variable>) ... (consumer)

Figure 1: Specific Macros for a Force Program

oriented synchronizations and data oriented synchronizations. The key con-
trol oriented synchronization is the barrier since it provides control of the
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entire force. Its semantics are that all processes must execute a Barrier
macro before one arbitrarily chosen process executes the code block between
Barrier and End Barrier. When the code block is complete, the entire force
begins execution at the statement following the End Barrier. Although all
but one process are temporarily suspended by a barrier, no process termina-
tion or creation takes place and all local process states are preserved across
the barrier. Operations which depend on the past computation, or determine
the future progress, of the entire force are typically enclosed in a barrier.

Another control based synchronization is the critical section, familiar
from the operating systems literature. Statements between
Critical <variable> and End Critical may only be executed by one process of
the force at a time. This mutual exclusion extends to any other critical sec-
tion with the same associated variable. Data oriented synchronization is pro-
vidcd l)y the elementary producer-consumer mechanism, in which global vari-
ables have a. binary state. full or empty, as well as a value. Execution by
some process of the macro, Produce <variable> = <expression>, waits for
the varial)Ie to be in the empty state, sets its value to that of the expression
and makes it rull, all in a manner which is atomic with respect to the progress
of any other process. Similarly, the macro, Use(<variable>), appearing in an
expression returns the value of the variable when it becomes full and sets it
empty. Variables in the wrong state may cause these macros to block the
progress of a process. Auxiliary macros for full/empty variables are
Purge <variable>, which sets a variable empty regardless of its previQus
rtate, and Copy(<variable>), which waits for the variable to be full and
returns its value but does not empty it.

A major weakness in the current set of force macros is that it does not
smoothly support decomposition of a program into parallel components on
the basis of functionality. The Pcase macro offers the rudiments of this, but
only allows one process to execute each of the parallel functions. What is
desired is a macro, Resolve, which will resolve the force into components exe-
cuting different, parallel code sections. The section of code for each com-
ponent would start with Component <name> strength <number>, which
wotild name the component and specify the fraction of the force to be
devoted to this component. The component strengths would be estimated by
the programmer on the basis of any knowledge available about the computa-
tional complexity of each component. A macro, Unify, would reunite the
components into a single force. The implementation of Resolve is compli-
cated by the conflicting demands of generality and efficiency. If the number
of components is larger than the number of processes in the force, then
inter-component synchronization may deadlock unless the components are
co-scheduled over the available processes. An implementation which pro-
duces process rescheduling at every possible deadlock point and is still
efficient when the number of processes exceeds the number of components is
under development.

Incorporation of a Resolve macro will make it useful to extend the barrier
idea. A barrier should be able to specify whether only the processes in the
current component are to be blocked or whether all processes in the parent
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force are to participate. In the case of recursively nested Resolve constructs,
the barrier might specify a nesting level relative to the one in which it
appears.

The Resolve idea promises a mechanism for functional decomposition of
programs into parallel components. but there is one more capability of paral-
lel programming environments with explicit process management which is not
addressed by the force. This is the ability to give away work to 7'available"
processes in a dynamic manner during execution. This ability is most called
for by tree algorithms and dynamic divide-and-conquer methods. It would be
desirable for the force to contain a mechanism for efficiently handling such
algorithms without making the user responsible for explicit process manage-
ment or losing the benefits of independence of the number of processes. A
mechanism related to resolve might be applied at each tree node but could
lead to much process management overhead in cases where the correct thing
to do is merely to traverse a subtree with the one remaining process.

Status and Applications

The force macros described above represent a parallel programming
environment in which process management is suppressed, and programs are
independent of the number of processes executing them, except for perfor-
mance. The system makes parallel execution the normal mode; sequential
operation must be explicitly invoked. Two ',eatures combine to ensure that
there is no topological structure to the parallel environment. First, processes
are identical in capability, and, second, all variables are either strictly local
to one process or uniformly shared among all of them. This eliminates much
of the complexity of the "mapping problem" encountered in constructing
parallel versions of algorithms for machines with visible processor topology.

Primitive operations of the force are available to support both fine-
grained and coarse-grained parallelism. Many of the primitives, especially
those stipporting fine grained interaction, require only local analysis to deter-
mine correctness of the synchronization. This locality strengthens the case
for being able to automate this analysis. The ability to recursively subdivide
the force, coupled with the support for parallelization on the basis of data
partitioning, orients the system towards "massive" parallelism in that the
activity of large numbers of processes can l)e compactly specified.

The system is currently tied fairly tightly to shared memory with
undifferentiated processes and, for that reason, does not support message
passing. One could view the Produce and Consume primitives as a weak form
of send and receive operations with the associated variable playing the role of
an unbuffered, one word, message channel.

The force system has been used to produce a parallel Gaussian elimina-
tion subroutinv,21 identical in interface and operation to the SGEFA routine
of LINI'ACK[(]. As well as being effective in this library subroutine type of
application, it has been used to write large parallel fluid dynamics programs,
including SOR algorithms for incompressible flow[7], [81 and MacCormack's
method for a shock tube model[9]. It has also been used to implenient a new
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parallel pivoting algorithm for solving sparse systems of linear equations[10].

The Machines

The issues which arise in implementing the force on a shared memory
multiprocessor will be addressed by considering implementations on two,
fairly different. such machines: the Denelcor HEP(31 and the Flexible Com-
l)uter Systems Flex/32[111. Not only are the two systems fairly different in
architecture. the IIEP being a pipelined multiprocessor while the Flex/32 is
built from multiple microprocessors, but the primitive operations for estab-
lishing and controlling parallel processes which are supported by the systems
are quite different. These parallel primitive operations are a combined result
of hardware, compiler support, operating system and run-time libraries. A
sulnmary of the hardware, parallelism model and primitive operations for
each of the machines follows.

The HEP

The HEP computer is a multiple instruction stream computer categor-
ized as M1INID by Flynn[12]. Several processing units, called Process Execu-
tion Modules (PEMs), may be connected to a shared memory consisting of
one or more memory modules as shown in Fig. 2. Even within a single PEM,
however, HEP is still an MIMD computer. Only the number of instructions
actually executing simultaneously, about 12 per PEM, changes when more
PENIs are added to a system. Separate memories store program and data
with smaller memories devoted to registers and frequently used constants.
Only data memory is shared between PEMs. We will concentrate on the

Process Execution \Iodule

Program M\emory
32K words by 64 b/w

Iegister
Nleniorv MI D

Cons tan t. Processinag
constlitUnit

Ntemory
•Ih~w by 6.11)

Switch

Data Data Data
Mem. em. Mem. Cache

Figure 2: Architecture of the IIEP Computer
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architecture of a single PEM which implements multiprocessing by using the
technique of pipelining.

There are several separate, interacting pipelines in a PEM but the major
flavor of the architecture can be given by considering only one of them, the
main execution pipeline. Heavy use has been made of pipelines in vector pro-
cessors (SI.ID computers). In such machines the operating units are broken
into small stages with data storage in each stage. Complete processing of a
pair of operands involves the data passing sequentially through all stages of
the "pipeline." Parallelism is achieved by having different pairs of operands
occiipying different stages of the pipeline simultaneously. The main execu-
tion pipeline of IIEP can be viewed as a unified structure which processes
most instructions using a pipeline with eight steps. Independent instructions
(along with their operands) flow through the pipeline with an instruction
being comlpletely executed in eight steps. Independence of the activities in
successive stages of the pipeline is achieved not by processing independent
components of vectors but by alternatel, issuing instructions from indepen-
dent instruction streams. Multiple copies of process state, including program
counter, are kept for a variable number of processes. A PEM is an MIMD
processor in exactly the same sense in which a pipelined vector processor is an
SINID machine. In both, independent data items are processed simultane-
ously in different stages of the pipeline while in the HEP, independent
inst ruct ions occupy pipeline stages along with their data.

The previous paragraph describes the register to register instructions.
Those dealing with main memory (data memory) behave differently. Data
memory is shared between PENIs and words are moved between register and
data memories by means of a class of Storage Function Unit (SFU) instruc-
tions. The relationship between the main execution pipeline and the SFU is
shown in Fig. 3. A process is characterized by a Process Status Word (PS\V)
containing a program counter and index offsets into both register memory
and constant miemory to support the writing of reentrant code. Under the
assumption that multiple processes will cooperate on a given job or task and
thus share memory, memory is allocated and protected on the basis of a
structure called a task. There are a maximum of 16 tasks, eight supervisor
tasks and eight user tasks. The 128 possible processes are divided into a
maximum of 6-1 users and 6-1 supervisor processes which must belong to tasks
of corresponding tyl)es. Aside from this restriction a task may have any
number of processes, from zero to 6-1.

An active process is represented in the hardware by a Process Tag (PT)
which points to one of the 128 possible PSWs. The instruction issuing opera-
tion maintains a fair allocation of resources between tasks first and between
processes within a task second by means of 16 task queues, each containing
up to 6.1 PTs and a secondiary queue called the snapshot queue. PTs coming
one at a time from the snapshot queue cause the issuing of an instruction
from the corresponding process into the execution pipeline.

When an SFU instruction (data memory access) is issued, the PT leaves
the (Ilieues of the main scheduler and enters a second set of identical queues

in the SFU. When a PT comes to the head of the SFU snapshot queue a
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16 Task Queues of
up to 64 Process Tags
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Figure 3: IIEP Pipeline Architecture

memory trsnsaction is built and sent, along with the PT, into the attached
node of a pipelined, message-switched switching network. The transaction

propagates through the sw itch to the appropriate memory bank and returns

to the SFU with status and perhaps data. An SFU instruction behaves as if

it were issued into a pipeline longer than the eight step execution pipeline

btit with the same step rate.

Hairdware support for process synchronization is based on

prodicer/cotinmuer synchronization. Each cell in register and data memories
has a full/empty state and synchronization is performed by having an
instruction wait for its operands to be full and its result empty before
proceeding. The synchronizing conditions are optionally checked by the
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instruction issuing mechanism and, if not fulfilled, cause the PT to be
immediately relinked into its task queue with the program counter of the
PSW unaltered.

Compiler level support consists of minimal language extensions to give
the user access to the parallelism of the hardware. The extensions can be
represented as subroutine calls or incorporated into the language definition.
Since the force is based on Fortran, the extensions to that language are
described. To allow for the fact that an independent process usually requires
some local variables, the process concept is tied to the Fortran subroutine.
The Fortran extension is merely a second version of the CALL statment,
CREATE. Control returns immediately from a CREATE statement, but the
created subroutine, with a unique copy of its local variables, is also executing
simultaneously. The RETURN in a created subroutine has the effect of ter-
minating the process executing the subroutine. Parameters are passed by
address in both CALL and CREATE.

The only other major conceptual modification to Fortran allows access to
the svnchronizing properties of the full/empty state of memory cells. Any
Fortran variable may be declared to be an "asynchronous" variable. Asyn-
chronous variables are distinguished by names beginning with a S symbol and
may have any Fortran type. They may appear in Fortran declarative state-
ments and adlhere to implicit typing rules based on the initial letter. If such
a variable appears on the right side of an assignment, wait for full, read and
set empty semantics apply. WVhen one appears on the left of an assignment,
the semantics are wait for empty, write and set full. To initialize the state
(not the value) of asynchronous variables, a new statement, PURGE, sets the
states of asynchronous variables to empty regardless of their previous states.

The HEP Fortran extensions of CREATE and asynchronous variables are
the simplest way to incorporate the parallel features of the hardware into the
Fortran language. Since process creation is directly supported by the HEP
instruction set and any memory reference may test and set the full/empty
state that is associated with each memory cell, the Fortran extensions are
direct representations of hardware mechanisms. The parallel computation
model suplorted by the Fortran compiler and run time system can thus be
viewed as shown in Fig. 4. A process with its own program counter and regis-
ters may spawn others like it using CREATE, and the processes interact by
way of full/empty shared memory cells.

The parallel programming primitive operations can be characterized as
in Table 1. Note tiat all the parallel primitives are user level operations
requiring no operating system intervention. Interrupts are not present in the
IIEP. Conditions whic', vouhl normally lead to an interrupt, including
supervisor calls, result i,' he creation of a supervisor process to handle the
condition and may or . r not suspend the process giving rise to the condi-
tion.
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Crcerto

Quit and save state

Set location em)ty
Produce - Wait for eml)ty, write and ill
Consume - Wait for full, read and empty

Table 1: HIEP Parallel Primitives

The Flex/320

The architecture of the Flex/32 is conceptually simpler than that of the
IIEP, but the system support for parallelism is more complex. The machine
consists of a set of single board microcomputers connected by several buses to
each other and to some common memory and synchronization har(ware. As
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shown in Fig. 5, there are a set of local buses, ten of them, each of which can
connect two boards, which are either single board computers consisting of
processor and memory or mass memory boards. Two common buses connect
the local buses together and to the common memory and synchronization
hardware. The memory on the common bus is faster for a processor to access
than that on the mass memory boards, but both are shared by all processors.
The memory on a processor board is accessible only to that processor.

Hardware support for synchronization is supplied by an 8192 bit lock
memory. This structure is meant to remove the requirement for repeated
tests by a processor trying to obtain a lock. There is an interrupt system
connected with each processor. which provides underlying hardware support
for an event signaling mechanism between processors as well as for exception
handling within a single processor.

The processor/memory boards are based on the National Semiconductor
32032 microprocessor chip. There may be one or four megabytes of memory
on a board and a VNIE bus interface is provided to connect an individual pro-
cessor to I/O devices. A self-test system, connected to all processors, pro-
vides a mechanism for testing, bootstrapping and initializing the multiproces-
sor.

The process model in the Flex/32 is somewhat different from that of the
HE' and is shown pictorially in Fig. 6. Since not all of the address space is

Shared Shared Synch ronizaton
memory memory lock memory

512K bytes 512K bytes 8192 bits

Dual common bus -- S S SI I
Local bus Local bus

Processor IProcessor
S -memory S - memory

board board

Processor Mass
S -memory S- :nemor .

board board

S -- bus switching

Figure 5: Flex/32 Architecture
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Figure 6: Flex/32 Run Time System - Process Model

shared, a process has a certain amount of strictly local memory. The system
also manages a unique identifying tag for each process and maintains a pro-
cess state which may be one of: running, non-existent, dormant, ready or
suspended. There is also a received message queue for each process which is
managed by the system.

In addition to a slightly more complicated process model, the Flex/32
system supports a more complex model of synchronization facilities linking
processes. The total systems model is shown in Fig. 7. At the outset,
processes are bound to individual processors. The processors may be mul-
tiprogramned, so more than one process may be bound to a processor. The
processes share communication and synchronization support supplied by the
operating system. The Signaling Channels implement the Event mechanism
and may be attached to a process as a receiver of the event, an originator, or
both. Lock bits may also be connected to several processors for mutual exclu-
sion enforcement. The message passing facility is represented by the received
message queue in each process and is thus not shown separately in the system
model.

The Flex/32 system provides numerous parallel processing primitives.
They may be divided into classes dealing with four different parts of the sys-
tem model: Processes, Messages, Events and Locks. The structures associ-
ated with each of these parts and the primitives which act on the structures
are summarized in Table 2. The primitives are implemented through system
calls. Since most of them interact with the multiprogramming of single l)r-
cessors, operating system intervention is usually required. Only a small part
of this fairly extensive parallel programming model is needed to support the
implementation of the force constructs.
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Process
Structure State: Orunning Tag: unique,

*suspended system-wide
*ready identifier
*dormant
*nonexistent

Primitives: get tag create
start up wait for termination
kill give up processor

Messages
Structure: *type *source id

Olength Odestination id
Opointer

Primitives: send receive-wait
receive-fail

Events
Structure: list of sources and destinations

Primitives: configure activate on event call
remove wait set timer

passive test

Locks
Structure: 8102 single bits
Operating mode: polling or interrupt

Primitives: allocate lock
unlock

Table 2: Flex/32 Parallel Primitives

Implementation of Force Primitives

Basic hardware support for synchronization on the HEP is through the
produce and consume operations on full/empty memory cells. The basic
hardware support for synchronization on the Flex/32 is supplied by the com-
mon lock memory and the interrupt hardware. Table 3 compares the imple-
mentation of critical sections on the two machines. The implementations are
very similar, but a detailed look at the differences will introduce the issues to
arise in more disjoint implementations of other primitives to follow.

The basic HEP synchronization is somewhat more powerful than is
needed for critical sections. A single full/empty variable suffices to control
entry to the section, but only its state is significant; the value of the variable
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HEP
Ststem state and initialization:

Single full/empty variable - full

Critical section code:
Consume critical section variable
Execute code body
Produce critical section variable

Performance:
Consumne and produce are single user-mode instructions,
but may result in some resource usage by waiting processes.

Flex/32
System state and initialization:

Single bit lock - clear

Critical section code:
Set critical section lock
Execute code body
Clear critical section lock

Perfor mance:
Set and clear locks are clone by system calls.
Processor rescheduling is possible, and wakeup of
a delayed process may be by interrupt or polling.

Table 3: Implementation of Critical Sections

is unused. The Flex/32 locks are well suited in complexity to what is needed
for critical section control. The process delay which may be required on criti-
cal section entry is supported by the hardware of the HEP, making critical
section entry a user level ol)eration with no operating system intervention.
On the other hand, a small amount of system resources is consumed by wait-
ing processes, which may cause congestion if many processes wait simultane-
ously. The Flex/32 implements locking and unlocking through system calls.
This is costly in terms of performance but allows processor rescheduling.
Wakeup of blocked processes may either be by polling or by interrupt.

There is considerably more structure to the implementation of the Bar-
rier macro on both machines.. Table 4 summarizes the implementations,
including two implementations for the HEP having quite different perfor-
inance characteristics. The two IIEP implementations emphasize the
difference between suspended and partially active waiting, which was men-
tioned in connection with the critical section code. This issue was not impor-
tant in connection with critical sections because the control is very simple
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HEP - Active Waiting HEP - Process Suspending
System State Initialization System state Initialization

Entry lock - clear Process state - empty
Exit lock - set save area
Counter - zero Counter - zero

Barrier Code Barrier Code
Wait for entry lock clear Count arriving process
Count arriving process If not last one then
If last process then save state and quit

execute code body else
set entry lock recreate other processes
clear exit lock clear counter

Wait for exit lock clear
Count exiting process
If last process then

set exit lock
clear entry lock

Flex/32
System State Initialization

Barrier event - connected to all processes
as source/destination

Counter - zero
Barrier Code

Lock counter
Count arriving process
Clear counter if last

Unlock counter
If last process then

Execute code body
Activate barrier event

else
Wait for barrier event

Table 4: Implementation of Barriers

and because the probability that many processes will simultaneously wait on
entry to critical sections with the same lock is low. In the Barrier, it is
guaranteed that all processes simultaneously access the same blocking condi-
tion. There is only one implementation for the Flex/32 since all synchroniza-
tion support is through operating system calls and involves process suspen-
sion rather than active waiting.

The critical section and the Barrier implementations serve to give an
idea of the range of differences in the implementation of Force primitives on
the two architectures. Many of the primitives, such as prescheduled DOALL,
did not change at all between the machines, while others, such as self-
scheduled DOALL, build on the same techniques used in the critical section



and Barrier. One other implementation issue which deserves mention is the
implementation of a data oriented synchronization on a machine which has
hardware support only for control oriented synchronization.

The Force includes primitive operations for the simplest data oriented
synchronization. produce and consume. The HEP hardware supports these
operations directly, using the full/empty state bit for each memory cell. In
the Flex/32. locks are separate items, not associated with data. To imple-
ment producer/consumer synchronization, a boolean data item must be allo-
cated to the full/empty state and a lock must be allocated to bind the data
transfer to the state change as an atomic unit. The lock itself cannot be used
to model the full/empty state because there is no way to bind it to the data
transmission. Furthermore, since the full/empty state is a data item, the sys-
tern supported process waiting mechanism cannot be used to wait for its
change. C'rilical section code must be repeatedly executed to monitor a
change in the state variable. In contrast, it is very easy to model the
lock/unlock synchronization using produce/consume. The full/empty state
of a memory cell is used for the lock and the value of the cell is simply
ignored.

Conclusions
The iml)lementation of a parallel programming environment on two

shared memory multiprocessors with quite different architectures has been
described. The l)rimitilve operations of the system make fairly efficient imple-
mentations possible on both machines. One major difference has to do with
whether l)arallelism is supported directly by hardware accessible to the user
or is supported only through the operating system. In the latter case, the
implementer must work in terms of the software run-time model presented
by the system rather than in terms of a model related more directly to the
hardware, which makes the prediction and optimization of performance
somewhat more difficult. The mechanism by which processes wait at a svn-
chronization is a key issue. If the waiting mechanism is tied to multilpro-
gramming through the operating system call, throughput will be optimized,
but a large overhead will be incurred for potentially short synchronization
delays.

The use of interrupts in the system architecture leads to natural support
for the Event concept. The implementation of Barrier type synchronizations
can be tied to the event concept fairly naturally. On machines which do not
support events, attention must be paid to minimizing the utilization of
resources by waiting processes. The Barrier differs from the critical section in
this regard because it is guaranteed that many processes will simultaneously
wait at the Barrier while critical section conflict is probabilistic, and the likli-
hood of many processes waiting at the entry to a critical section is low in a
normally constructed program.



-19-

REFERENCES

[1] J. B. Dennis and E. C. Van Horn, "Programming semantics for multipro-
grarmmed computations," Comm. ACMVol. 9, No. 3, pp. 143-155 (1966).

[2] H. F. Jordan, "Structuring parallel algorithms in an MIMD, shared
memory environment," Proc. 18th Hawaii Int'nl Con. on Systems Sci-
ences, Vol. II, pp. 30-38 (1085); to appear in Parallel Computing, 1985.

[3] H. F. Jordan, "HEP architecture, programming and performance," in
Parallel 3IML\D Computation: The HEP Supercomputer and its Applica-
tions, .. S. Kowalik, Ed., MIT Press (1985).

[4] "The Uniform System Approach to Programming the Butterfly Parallel
Processor." Draft of Oct. 23, 1085, Copyright BBN Laboratories Inc. (R.
H. Thomas, private communication).

[.5] F. Darema-Rogers, D. A. George, V. A. Norton and G. F. Pfister, "A VXM
Parallel Environment," Rept. RCi1225 (#49161), IBM T. J. Watson Res.
Ctr. (Jan. 1085).

[] J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK
Users Guide, SIAM Publications, Phil., PA (1070).

[7] N. R. Patel and H. F. Jordan, "A parallelized point rowwise successive
over-relaxation method on a multiprocessor," Parallel Computing, Vol. 1,
No. 3&4, December 198.1.

[8] N. Patel, W. B. Sturek and H. F. Jordan, "A Parallelized Solutizn for
Incompressible Flow on a Multiprocessor," Proc. AIAA 7th Computational
Fluid Dynamics Conf., Cincinnati, Ohio, pp. 203-213, July 1085.

[0] N. Patel, private communication.

[10] G. Alaghband and H. F. Jordan, "Multiprocessor Sparse L/U Decomposi-
tion with Controlled Fill-in," ICASE Rept. No. 85-48, NASA Langley Res.
Ctr., Hampton, VA, 1985.

[II] The Fleir/38 System Overview, Flexible Computer Corp., Dallas, Texas,
1080.

[12] Flynn, M. J., "Some Computer Organizations and Their Effectiveness,"
IEEE Trans. on Computers, pp. 048-060 (1072).



Standard Bibliographic Page

1. Report No. NASA CR-178161 2. Government Accession No. 3. Recipient's Catalog No.

ICASE Report No. 86-54 1
4. Title and Subtitle 5. Report Date

THE FORCE ON THE FLEX: GLOBAL PARALLELISM AND August 1986
PORTABILITY 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Harry F. Jordan 86-54

9. Performing Organization Name and Address 10. Work Unit No.

Institute for Computer Applications in Science and
Engineering 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17070
Hampton. VA 23665-5225

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

National Aeronautics and Space Administration Contractor Report

Washington, DC 20546 14. Sponsoring Agency Code

505-31-83-01
15. Supplementary Notes

Langley Technical Monitor: Additional support provided by
J. C. South AFOSR Grant No. 85-0189.

Final Report

16. Abstract A parallel programming methodology, called the force, supports tne con-
struction of programs to be executed in parallel by an unspecified, but poten-

tially large, number of processes. The methodology was originally developed on a

pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the prim-

itive operations of the force in a set of macros which expend into multiprocessor
Fortran code. A small set of primitives is sufficient to write large parallel
programs, and the system has been used to produce 10,000 line programs in compu-

tational fluid dynamics. The level of complexity of the force primitives is in-
termediate. It is high enough to mask detailed architectural differences between
multiprocessors but low enough to give the user control over performance.

The system is being ported to a medium scale multiprocessor, the Flex/32, which
is a 20 processor system with a mixture of shared and local memory. Memory
organization and the type of processor synchronization supported by the hardware
on the two machines lead to some differences in efficient implementations of the
force primitives, but the user interface remains the same. An initial implemen-
tation was done by retargeting the macros to Flexible Computer Corporation's
ConCurrent C language. Subsequently, the macros were caused to directly produce
the system calls which form the basis for ConCurrent C. The implementation of
the Fortran based system is in step with Flexible Computer Corporations's
implementation of a Fortran system in the parallel environment.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

multiprocessors, shared-memory, 61 - Computer Programming and Software
parallel programming 62 - Computer Systems

Unclassified - Unlimited

19. Security Claasif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price

Unelanified Unclassified 21 A02

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)


